60+

Уникальных
вариантов

4 200+

Разборов
с видео

7 000+

Уникальных задач

Банк Задач - Global_EE

Мы собрали более 7 000 задач по физике. 4 200 из них уже с видеоразборами

Выбор предмета

Выберите предмет, нажимая на кнопки ниже

ОГЭ
ЕГЭ

Задача 1

Номер 20

ОГЭ

2 балла

Можно ли, используя флотацию, сделать так, чтобы пустая порода всплывала вверх, а крупицы руды оседали на дно? Ответ поясните.

Флотация

Чистая руда почти никогда не встречается в природе. Почти всегда полезное ископаемое перемешано с «пустой», ненужной горной породой. Процесс отделения пустой породы от полезного ископаемого называют обогащением руды.
Одним из способов обогащения руды, основанным на явлении смачивания, является флотация. Сущность флотации состоит в следующем. Раздробленная в мелкий порошок руда взбалтывается в воде. Туда же добавляется небольшое количество вещества, обладающего способностью смачивать одну из подлежащих разделению частей, например крупицы полезного ископаемого, и не смачивать другую часть — крупицы пустой породы. Кроме того, добавляемое вещество не должно растворяться в воде. При этом вода не будет смачивать поверхность крупицы руды, покрытую слоем добавки. Обычно применяют какое-нибудь масло.
В результате перемешивания крупицы полезного ископаемого обволакиваются тонкой пленкой масла, а крупицы пустой породы остаются свободными. В получившуюся смесь очень мелкими порциями вдувают воздух. Пузырьки воздуха, пришедшие в соприкосновение с крупицей полезной породы, покрытой слоем масла и потому не смачиваемой водой, прилипают к ней. Это происходит потому, что тонкая пленка воды между пузырьками воздуха и не смачиваемой ею поверхностью крупицы стремится уменьшить свою площадь, подобно капле воды на промасленной бумаге, и обнажает поверхность крупицы.
Крупицы полезной руды с пузырьками воздуха поднимаются вверх, а крупицы пустой породы опускаются вниз. Таким образом, происходит более или менее полное отделение пустой породы и получается так называемый концентрат, богатый полезной рудой.

Видеоразбор

-

Ответ

Задача 1

Номер 20

ОГЭ

2 балла

Можно ли, используя флотацию, сделать так, чтобы пустая порода всплывала вверх, а крупицы руды оседали на дно? Ответ поясните.

Флотация

Чистая руда почти никогда не встречается в природе. Почти всегда полезное ископаемое перемешано с «пустой», ненужной горной породой. Процесс отделения пустой породы от полезного ископаемого называют обогащением руды.
Одним из способов обогащения руды, основанным на явлении смачивания, является флотация. Сущность флотации состоит в следующем. Раздробленная в мелкий порошок руда взбалтывается в воде. Туда же добавляется небольшое количество вещества, обладающего способностью смачивать одну из подлежащих разделению частей, например крупицы полезного ископаемого, и не смачивать другую часть — крупицы пустой породы. Кроме того, добавляемое вещество не должно растворяться в воде. При этом вода не будет смачивать поверхность крупицы руды, покрытую слоем добавки. Обычно применяют какое-нибудь масло.
В результате перемешивания крупицы полезного ископаемого обволакиваются тонкой пленкой масла, а крупицы пустой породы остаются свободными. В получившуюся смесь очень мелкими порциями вдувают воздух. Пузырьки воздуха, пришедшие в соприкосновение с крупицей полезной породы, покрытой слоем масла и потому не смачиваемой водой, прилипают к ней. Это происходит потому, что тонкая пленка воды между пузырьками воздуха и не смачиваемой ею поверхностью крупицы стремится уменьшить свою площадь, подобно капле воды на промасленной бумаге, и обнажает поверхность крупицы.
Крупицы полезной руды с пузырьками воздуха поднимаются вверх, а крупицы пустой породы опускаются вниз. Таким образом, происходит более или менее полное отделение пустой породы и получается так называемый концентрат, богатый полезной рудой.

Видеоразбор

-

Ответ

Задача 2

Номер 20

ОГЭ

2 балла

На глубине 200 м ниже уровня моря вода содержит примерно 1,5% растворенного в ней воздуха. Возможно ли извлечь воздух из воды? Ответ поясните.

Вулканы

Известно, что по мере спуска в недра Земли температура постепенно повышается. Это обстоятельство и сам факт извержения вулканами жидкой лавы невольно наталкивали на мысль, что на определенных глубинах вещество земного шара находится в расплавленном состоянии. Однако на самом деле все не так просто. Одновременно с повышением температуры растет давление в земных глубинах. А ведь чем больше давление, тем выше температура плавления (см. рис.).
Согласно современным представлениям большая часть земных недр сохраняет твердое состояние. Однако вещество астеносферы (оболочка Земли от 100 км до 300 км в глубину) находится в почти расплавленном состоянии. Так называют твердое состояние, которое легко переходит в жидкое (расплавленное) при небольшом повышении температуры (процесс 1) или понижении давления (процесс 2).
Источником первичных расплавов магмы является астеносфера. Если в каком-то районе снижается давление (например, при смещении участков литосферы), то твердое вещество астеносферы тотчас превращается в жидкий расплав, то есть в магму.
Но какие физические причины приводят в действие механизм извержения вулкана?
В магме наряду с парами воды содержатся различные газы (углекислый газ, хлористый и фтористый водород, оксиды серы, метан и другие). Концентрация растворенных газов соответствует внешнему давлению. В физике известен закон Генри: концентрация газа, растворенного в жидкости, пропорциональна его давлению над жидкостью. Теперь представим, что давление на глубине уменьшилось. Газы, растворенные в магме, переходят в газообразное состояние. Магма увеличивается в объеме, вспенивается и начинает подниматься вверх. По мере подъема магмы давление падает еще больше, поэтому процесс выделения газов усиливается, что, в свою очередь, приводит к ускорению подъема.

Видеоразбор

-

Ответ

Задача 2

Номер 20

ОГЭ

2 балла

На глубине 200 м ниже уровня моря вода содержит примерно 1,5% растворенного в ней воздуха. Возможно ли извлечь воздух из воды? Ответ поясните.

Вулканы

Известно, что по мере спуска в недра Земли температура постепенно повышается. Это обстоятельство и сам факт извержения вулканами жидкой лавы невольно наталкивали на мысль, что на определенных глубинах вещество земного шара находится в расплавленном состоянии. Однако на самом деле все не так просто. Одновременно с повышением температуры растет давление в земных глубинах. А ведь чем больше давление, тем выше температура плавления (см. рис.).
Согласно современным представлениям большая часть земных недр сохраняет твердое состояние. Однако вещество астеносферы (оболочка Земли от 100 км до 300 км в глубину) находится в почти расплавленном состоянии. Так называют твердое состояние, которое легко переходит в жидкое (расплавленное) при небольшом повышении температуры (процесс 1) или понижении давления (процесс 2).
Источником первичных расплавов магмы является астеносфера. Если в каком-то районе снижается давление (например, при смещении участков литосферы), то твердое вещество астеносферы тотчас превращается в жидкий расплав, то есть в магму.
Но какие физические причины приводят в действие механизм извержения вулкана?
В магме наряду с парами воды содержатся различные газы (углекислый газ, хлористый и фтористый водород, оксиды серы, метан и другие). Концентрация растворенных газов соответствует внешнему давлению. В физике известен закон Генри: концентрация газа, растворенного в жидкости, пропорциональна его давлению над жидкостью. Теперь представим, что давление на глубине уменьшилось. Газы, растворенные в магме, переходят в газообразное состояние. Магма увеличивается в объеме, вспенивается и начинает подниматься вверх. По мере подъема магмы давление падает еще больше, поэтому процесс выделения газов усиливается, что, в свою очередь, приводит к ускорению подъема.

Видеоразбор

-

Ответ

Задача 3

Номер 20

ОГЭ

2 балла

При работе в условиях повышенного давления (например, при работе аквалангиста на глубине) ткани человека поглощают дополнительное количество азота. Быстро или медленно должны подниматься аквалангисты с глубины на поверхность воды? Ответ поясните.

Вулканы

Известно, что по мере спуска в недра Земли температура постепенно повышается. Это обстоятельство и сам факт извержения вулканами жидкой лавы невольно наталкивали на мысль, что на определенных глубинах вещество земного шара находится в расплавленном состоянии. Однако на самом деле все не так просто. Одновременно с повышением температуры растет давление в земных глубинах. А ведь чем больше давление, тем выше температура плавления (см. рис.).
Согласно современным представлениям большая часть земных недр сохраняет твердое состояние. Однако вещество астеносферы (оболочка Земли от 100 км до 300 км в глубину) находится в почти расплавленном состоянии. Так называют твердое состояние, которое легко переходит в жидкое (расплавленное) при небольшом повышении температуры (процесс 1) или понижении давления (процесс 2).
Источником первичных расплавов магмы является астеносфера. Если в каком-то районе снижается давление (например, при смещении участков литосферы), то твердое вещество астеносферы тотчас превращается в жидкий расплав, то есть в магму.
Но какие физические причины приводят в действие механизм извержения вулкана?
В магме наряду с парами воды содержатся различные газы (углекислый газ, хлористый и фтористый водород, оксиды серы, метан и другие). Концентрация растворенных газов соответствует внешнему давлению. В физике известен закон Генри: концентрация газа, растворенного в жидкости, пропорциональна его давлению над жидкостью. Теперь представим, что давление на глубине уменьшилось. Газы, растворенные в магме, переходят в газообразное состояние. Магма увеличивается в объеме, вспенивается и начинает подниматься вверх. По мере подъема магмы давление падает еще больше, поэтому процесс выделения газов усиливается, что, в свою очередь, приводит к ускорению подъема.

Видеоразбор

Видеоразбор

-

Ответ

Задача 3

Номер 20

ОГЭ

2 балла

При работе в условиях повышенного давления (например, при работе аквалангиста на глубине) ткани человека поглощают дополнительное количество азота. Быстро или медленно должны подниматься аквалангисты с глубины на поверхность воды? Ответ поясните.

Вулканы

Известно, что по мере спуска в недра Земли температура постепенно повышается. Это обстоятельство и сам факт извержения вулканами жидкой лавы невольно наталкивали на мысль, что на определенных глубинах вещество земного шара находится в расплавленном состоянии. Однако на самом деле все не так просто. Одновременно с повышением температуры растет давление в земных глубинах. А ведь чем больше давление, тем выше температура плавления (см. рис.).
Согласно современным представлениям большая часть земных недр сохраняет твердое состояние. Однако вещество астеносферы (оболочка Земли от 100 км до 300 км в глубину) находится в почти расплавленном состоянии. Так называют твердое состояние, которое легко переходит в жидкое (расплавленное) при небольшом повышении температуры (процесс 1) или понижении давления (процесс 2).
Источником первичных расплавов магмы является астеносфера. Если в каком-то районе снижается давление (например, при смещении участков литосферы), то твердое вещество астеносферы тотчас превращается в жидкий расплав, то есть в магму.
Но какие физические причины приводят в действие механизм извержения вулкана?
В магме наряду с парами воды содержатся различные газы (углекислый газ, хлористый и фтористый водород, оксиды серы, метан и другие). Концентрация растворенных газов соответствует внешнему давлению. В физике известен закон Генри: концентрация газа, растворенного в жидкости, пропорциональна его давлению над жидкостью. Теперь представим, что давление на глубине уменьшилось. Газы, растворенные в магме, переходят в газообразное состояние. Магма увеличивается в объеме, вспенивается и начинает подниматься вверх. По мере подъема магмы давление падает еще больше, поэтому процесс выделения газов усиливается, что, в свою очередь, приводит к ускорению подъема.

Видеоразбор

Видеоразбор

-

Ответ

Задача 4

Номер 20

ОГЭ

2 балла

Ракетный двигатель выбрасывает из сопла газы со скоростью 3 км/с относительно ракеты. Можно ли при помощи этого двигателя разогнать ракету до скорости 8 км/с относительно стартового стола? Ответ поясните.

Реактивное движение

Реактивным называется движение, которое происходит под действием силы реакции, действующей на движущееся тело со стороны струи вещества, выбрасываемого из двигателя. Пояснить принцип реактивного движения можно на примере движения ракеты.
Пусть в двигателе, установленном на ракете, происходит сгорание топлива и продукты горения (горячие газы) под высоким давлением выбрасываются из сопла двигателя. На каждую порцию газов, выброшенных из сопла, со стороны двигателя действует некоторая сила, которая приводит эту порцию газов в движение. В соответствии с третьим законом Ньютона, на двигатель со стороны выбрасываемых газов действует сила, такая же по модулю и противоположная по направлению. Эта сила называется реактивной. Под ее действием ракета приобретает ускорение и разгоняется в направлении, противоположном направлению выбрасывания газов. Модуль F реактивной силы может быть вычислен при помощи простой формулы:

F = μu

где u — модуль скорости истечения газов из сопла двигателя относительно ракеты, а μ — скорость расхода топлива (масса вещества, выбрасываемого двигателем в единицу времени, измеряется в кг/с). Направлена реактивная сила всегда в направлении, противоположном направлению истечения газовой струи. Реактивное движение также можно объяснить и при помощи закона сохранения импульса.
Принцип реактивного движения широко используется в технике. Помимо ракет реактивные двигатели приводят в движение самолеты и водные катера. На основании этого принципа конструируют различные приспособления — поливальные устройства с вертушками, называемыми «сегнеровым» колесом, игрушки и т. п. Реактивное движение встречается и в живой природе. Некоторые морские организмы (кальмары, каракатицы) двигаются, выбрасывая предварительно засосанные внутрь себя порции воды. В качестве любопытного примера из мира растений можно привести так называемый «бешеный огурец». После созревания семян из плода этого растения под большим давлением выбрасывается жидкость, в результате чего огурец отлетает на некоторое расстояние от места своего произрастания.
При реактивном движении ракеты ее масса непрерывно уменьшается из-за сгорания топлива и выбрасывания наружу продуктов сгорания. По этой причине модуль ускорения ракеты все время изменяется, а скорость ракеты нелинейно зависит от массы сгоревшего топлива. Впервые задача об отыскании модуля конечной скорости v ракеты, масса которой изменилась от значения m0 до величины m, была решена русским ученым, пионером космонавтики К. Э. Циолковским. График зависимости, иллюстрирующей полученную им формулу, показан на рисунке.
Из графика видно, что полученная Циолковским закономерность может быть кратко сформулирована следующим образом: если скорость истечения газов из сопла двигателя постоянна, то при уменьшении массы ракеты в геометрической прогрессии модуль скорости ракеты возрастает в арифметической прогрессии. Иными словами, если при уменьшении массы ракеты в 2 раза (m0/m = 2) модуль скорости ракеты увеличивается на 1 км/с, то при уменьшении массы ракеты в 4 раза (m0/m = 4) модуль скорости ракеты возрастет еще на 1 км/с. Из-за такой закономерности разгон ракеты до высокой скорости требует очень большого расхода топлива.

Видеоразбор

Видеоразбор

-

Ответ

Задача 4

Номер 20

ОГЭ

2 балла

Ракетный двигатель выбрасывает из сопла газы со скоростью 3 км/с относительно ракеты. Можно ли при помощи этого двигателя разогнать ракету до скорости 8 км/с относительно стартового стола? Ответ поясните.

Реактивное движение

Реактивным называется движение, которое происходит под действием силы реакции, действующей на движущееся тело со стороны струи вещества, выбрасываемого из двигателя. Пояснить принцип реактивного движения можно на примере движения ракеты.
Пусть в двигателе, установленном на ракете, происходит сгорание топлива и продукты горения (горячие газы) под высоким давлением выбрасываются из сопла двигателя. На каждую порцию газов, выброшенных из сопла, со стороны двигателя действует некоторая сила, которая приводит эту порцию газов в движение. В соответствии с третьим законом Ньютона, на двигатель со стороны выбрасываемых газов действует сила, такая же по модулю и противоположная по направлению. Эта сила называется реактивной. Под ее действием ракета приобретает ускорение и разгоняется в направлении, противоположном направлению выбрасывания газов. Модуль F реактивной силы может быть вычислен при помощи простой формулы:

F = μu

где u — модуль скорости истечения газов из сопла двигателя относительно ракеты, а μ — скорость расхода топлива (масса вещества, выбрасываемого двигателем в единицу времени, измеряется в кг/с). Направлена реактивная сила всегда в направлении, противоположном направлению истечения газовой струи. Реактивное движение также можно объяснить и при помощи закона сохранения импульса.
Принцип реактивного движения широко используется в технике. Помимо ракет реактивные двигатели приводят в движение самолеты и водные катера. На основании этого принципа конструируют различные приспособления — поливальные устройства с вертушками, называемыми «сегнеровым» колесом, игрушки и т. п. Реактивное движение встречается и в живой природе. Некоторые морские организмы (кальмары, каракатицы) двигаются, выбрасывая предварительно засосанные внутрь себя порции воды. В качестве любопытного примера из мира растений можно привести так называемый «бешеный огурец». После созревания семян из плода этого растения под большим давлением выбрасывается жидкость, в результате чего огурец отлетает на некоторое расстояние от места своего произрастания.
При реактивном движении ракеты ее масса непрерывно уменьшается из-за сгорания топлива и выбрасывания наружу продуктов сгорания. По этой причине модуль ускорения ракеты все время изменяется, а скорость ракеты нелинейно зависит от массы сгоревшего топлива. Впервые задача об отыскании модуля конечной скорости v ракеты, масса которой изменилась от значения m0 до величины m, была решена русским ученым, пионером космонавтики К. Э. Циолковским. График зависимости, иллюстрирующей полученную им формулу, показан на рисунке.
Из графика видно, что полученная Циолковским закономерность может быть кратко сформулирована следующим образом: если скорость истечения газов из сопла двигателя постоянна, то при уменьшении массы ракеты в геометрической прогрессии модуль скорости ракеты возрастает в арифметической прогрессии. Иными словами, если при уменьшении массы ракеты в 2 раза (m0/m = 2) модуль скорости ракеты увеличивается на 1 км/с, то при уменьшении массы ракеты в 4 раза (m0/m = 4) модуль скорости ракеты возрастет еще на 1 км/с. Из-за такой закономерности разгон ракеты до высокой скорости требует очень большого расхода топлива.

Видеоразбор

Видеоразбор

-

Ответ

Задача 5

Номер 20

ОГЭ

2 балла

Прибор, изображенный на рисунке в тексте, освободили от воды и перевернули так, что трубочки оказались направленными вертикально вниз, и погрузили трубочки в сосуд с водой. При продувании через горизонтальную трубу воздуха оказалось, что в трубочки всосалось некоторое количество воды из сосуда. Длиннее или короче окажется столбик жидкости, оказавшийся в средней трубочке, по сравнению со столбиками, оказавшимися в крайних трубочках? Ответ поясните.

Закон Бернулли

Этот важный закон был открыт в 1738 году Даниилом Бернулли — швейцарским физиком, механиком и математиком, академиком и иностранным почетным членом Петербургской академии наук. Закон Бернулли позволяет понять некоторые явления, наблюдаемые при течении потока жидкости или газа.
В качестве примера рассмотрим поток жидкости плотностью ρ, текущей по наклоненной под углом к горизонту трубе. Если жидкость полностью заполняет трубу, то закон Бернулли выражается следующим простым
уравнением:

ρgh + ρv2/2 + p = const

В этом уравнении h – высота, на которой находится выделенный объем жидкости, v — скорость этого объема, p — давление внутри потока жидкости на данной высоте. Записанное уравнение свидетельствует о том, что сумма трех величин, первая из которых зависит от высоты, вторая — от квадрата скорости, а третья — от давления, есть величина постоянная.
В частности, если жидкость течет вдоль горизонтали (то есть высота h не изменяется), то участкам потока, которые движутся с большей скоростью, соответствует меньшее давление, и наоборот. Это можно
продемонстрировать при помощи следующего простого прибора.
Возьмем горизонтальную стеклянную трубу, в центральной части которой сделано сужение (см. рис.). Припаяем к отверстиям в этой трубе три тонких стеклянных трубочки – две около краев трубы (там, где она толще) и одну – в центральной части трубы (там, где находится сужение). Расположим эту трубу горизонтально и будем пропускать через нее воду под давлением – так, как показано стрелкой на рисунке. Из направленных вверх трубочек начнут бить фонтанчики. Поскольку площадь поперечного сечения центральной части трубы меньше, то скорость протекания воды через эту часть будет больше, чем через левый и правый участки трубы. По этой причине в соответствии с законом Бернулли давление в жидкости в центральной части трубы будет меньше, чем в остальных частях трубы, и высота среднего фонтанчика будет меньше, чем крайних фонтанчиков.
Описанное явление легко объясняется и с помощью второго закона Ньютона. Действительно, частицы жидкости при переходе из начального участка трубы в центральный должны увеличить свою скорость, то есть ускориться. Для этого на них должна действовать сила, направленная в сторону центральной части трубы. Эта сила представляет собой разность сил давления. Следовательно, давление в центральной части трубы должно быть меньше, чем в ее начальной части. Совершенно аналогично рассматривается и переход жидкости из центральной части трубы в ее конечную часть, при котором частицы жидкости замедляются.
При помощи закона Бернулли могут быть объяснены разнообразные явления, возникающие при течении потоков жидкости или газа. Например, известно, что двум большим кораблям, движущимся попутными курсами, запрещается проходить близко друг от друга. При таком движении между близкими бортами кораблей возникает более быстрый поток движущейся воды, чем со стороны внешних бортов. Вследствие этого давление в потоке воды между кораблями становится меньше, чем снаружи, и возникает сила, которая начинает подталкивать корабли друг к другу. Если расстояние между кораблями мало, то может произойти их столкновение.

Видеоразбор

Видеоразбор

-

Ответ

Задача 5

Номер 20

ОГЭ

2 балла

Прибор, изображенный на рисунке в тексте, освободили от воды и перевернули так, что трубочки оказались направленными вертикально вниз, и погрузили трубочки в сосуд с водой. При продувании через горизонтальную трубу воздуха оказалось, что в трубочки всосалось некоторое количество воды из сосуда. Длиннее или короче окажется столбик жидкости, оказавшийся в средней трубочке, по сравнению со столбиками, оказавшимися в крайних трубочках? Ответ поясните.

Закон Бернулли

Этот важный закон был открыт в 1738 году Даниилом Бернулли — швейцарским физиком, механиком и математиком, академиком и иностранным почетным членом Петербургской академии наук. Закон Бернулли позволяет понять некоторые явления, наблюдаемые при течении потока жидкости или газа.
В качестве примера рассмотрим поток жидкости плотностью ρ, текущей по наклоненной под углом к горизонту трубе. Если жидкость полностью заполняет трубу, то закон Бернулли выражается следующим простым
уравнением:

ρgh + ρv2/2 + p = const

В этом уравнении h – высота, на которой находится выделенный объем жидкости, v — скорость этого объема, p — давление внутри потока жидкости на данной высоте. Записанное уравнение свидетельствует о том, что сумма трех величин, первая из которых зависит от высоты, вторая — от квадрата скорости, а третья — от давления, есть величина постоянная.
В частности, если жидкость течет вдоль горизонтали (то есть высота h не изменяется), то участкам потока, которые движутся с большей скоростью, соответствует меньшее давление, и наоборот. Это можно
продемонстрировать при помощи следующего простого прибора.
Возьмем горизонтальную стеклянную трубу, в центральной части которой сделано сужение (см. рис.). Припаяем к отверстиям в этой трубе три тонких стеклянных трубочки – две около краев трубы (там, где она толще) и одну – в центральной части трубы (там, где находится сужение). Расположим эту трубу горизонтально и будем пропускать через нее воду под давлением – так, как показано стрелкой на рисунке. Из направленных вверх трубочек начнут бить фонтанчики. Поскольку площадь поперечного сечения центральной части трубы меньше, то скорость протекания воды через эту часть будет больше, чем через левый и правый участки трубы. По этой причине в соответствии с законом Бернулли давление в жидкости в центральной части трубы будет меньше, чем в остальных частях трубы, и высота среднего фонтанчика будет меньше, чем крайних фонтанчиков.
Описанное явление легко объясняется и с помощью второго закона Ньютона. Действительно, частицы жидкости при переходе из начального участка трубы в центральный должны увеличить свою скорость, то есть ускориться. Для этого на них должна действовать сила, направленная в сторону центральной части трубы. Эта сила представляет собой разность сил давления. Следовательно, давление в центральной части трубы должно быть меньше, чем в ее начальной части. Совершенно аналогично рассматривается и переход жидкости из центральной части трубы в ее конечную часть, при котором частицы жидкости замедляются.
При помощи закона Бернулли могут быть объяснены разнообразные явления, возникающие при течении потоков жидкости или газа. Например, известно, что двум большим кораблям, движущимся попутными курсами, запрещается проходить близко друг от друга. При таком движении между близкими бортами кораблей возникает более быстрый поток движущейся воды, чем со стороны внешних бортов. Вследствие этого давление в потоке воды между кораблями становится меньше, чем снаружи, и возникает сила, которая начинает подталкивать корабли друг к другу. Если расстояние между кораблями мало, то может произойти их столкновение.

Видеоразбор

Видеоразбор

-

Ответ

Задача 6

Номер 20

ОГЭ

2 балла

Прибор, изображенный на рисунке в тексте, освободили от воды и перевернули так, что трубочки оказались направленными вертикально вниз, и погрузили трубочки в сосуд с водой. При продувании через горизонтальную трубу воздуха оказалось, что в трубочки всосалось некоторое количество воды из сосуда. Длиннее или короче окажутся столбики жидкости, оказавшиеся в крайних трубочках, по сравнению со столбиком, оказавшимся в средней трубочке? Ответ поясните.

Закон Бернулли

Этот важный закон был открыт в 1738 году Даниилом Бернулли — швейцарским физиком, механиком и математиком, академиком и иностранным почетным членом Петербургской академии наук. Закон Бернулли позволяет понять некоторые явления, наблюдаемые при течении потока жидкости или газа.
В качестве примера рассмотрим поток жидкости плотностью ρ, текущей по наклоненной под углом к горизонту трубе. Если жидкость полностью заполняет трубу, то закон Бернулли выражается следующим простым
уравнением:

ρgh + ρv2/2 + p = const

В этом уравнении h – высота, на которой находится выделенный объем жидкости, v — скорость этого объема, p — давление внутри потока жидкости на данной высоте. Записанное уравнение свидетельствует о том, что сумма трех величин, первая из которых зависит от высоты, вторая — от квадрата скорости, а третья — от давления, есть величина постоянная.
В частности, если жидкость течет вдоль горизонтали (то есть высота h не изменяется), то участкам потока, которые движутся с большей скоростью, соответствует меньшее давление, и наоборот. Это можно
продемонстрировать при помощи следующего простого прибора.
Возьмем горизонтальную стеклянную трубу, в центральной части которой сделано сужение (см. рис.). Припаяем к отверстиям в этой трубе три тонких стеклянных трубочки – две около краев трубы (там, где она толще) и одну – в центральной части трубы (там, где находится сужение). Расположим эту трубу горизонтально и будем пропускать через нее воду под давлением – так, как показано стрелкой на рисунке. Из направленных вверх трубочек начнут бить фонтанчики. Поскольку площадь поперечного сечения центральной части трубы меньше, то скорость протекания воды через эту часть будет больше, чем через левый и правый участки трубы. По этой причине в соответствии с законом Бернулли давление в жидкости в центральной части трубы будет меньше, чем в остальных частях трубы, и высота среднего фонтанчика будет меньше, чем крайних фонтанчиков.
Описанное явление легко объясняется и с помощью второго закона Ньютона. Действительно, частицы жидкости при переходе из начального участка трубы в центральный должны увеличить свою скорость, то есть ускориться. Для этого на них должна действовать сила, направленная в сторону центральной части трубы. Эта сила представляет собой разность сил давления. Следовательно, давление в центральной части трубы должно быть меньше, чем в ее начальной части. Совершенно аналогично рассматривается и переход жидкости из центральной части трубы в ее конечную часть, при котором частицы жидкости замедляются.
При помощи закона Бернулли могут быть объяснены разнообразные явления, возникающие при течении потоков жидкости или газа. Например, известно, что двум большим кораблям, движущимся попутными курсами, запрещается проходить близко друг от друга. При таком движении между близкими бортами кораблей возникает более быстрый поток движущейся воды, чем со стороны внешних бортов. Вследствие этого давление в потоке воды между кораблями становится меньше, чем снаружи, и возникает сила, которая начинает подталкивать корабли друг к другу. Если расстояние между кораблями мало, то может произойти их столкновение.

Видеоразбор

-

Ответ

Задача 6

Номер 20

ОГЭ

2 балла

Прибор, изображенный на рисунке в тексте, освободили от воды и перевернули так, что трубочки оказались направленными вертикально вниз, и погрузили трубочки в сосуд с водой. При продувании через горизонтальную трубу воздуха оказалось, что в трубочки всосалось некоторое количество воды из сосуда. Длиннее или короче окажутся столбики жидкости, оказавшиеся в крайних трубочках, по сравнению со столбиком, оказавшимся в средней трубочке? Ответ поясните.

Закон Бернулли

Этот важный закон был открыт в 1738 году Даниилом Бернулли — швейцарским физиком, механиком и математиком, академиком и иностранным почетным членом Петербургской академии наук. Закон Бернулли позволяет понять некоторые явления, наблюдаемые при течении потока жидкости или газа.
В качестве примера рассмотрим поток жидкости плотностью ρ, текущей по наклоненной под углом к горизонту трубе. Если жидкость полностью заполняет трубу, то закон Бернулли выражается следующим простым
уравнением:

ρgh + ρv2/2 + p = const

В этом уравнении h – высота, на которой находится выделенный объем жидкости, v — скорость этого объема, p — давление внутри потока жидкости на данной высоте. Записанное уравнение свидетельствует о том, что сумма трех величин, первая из которых зависит от высоты, вторая — от квадрата скорости, а третья — от давления, есть величина постоянная.
В частности, если жидкость течет вдоль горизонтали (то есть высота h не изменяется), то участкам потока, которые движутся с большей скоростью, соответствует меньшее давление, и наоборот. Это можно
продемонстрировать при помощи следующего простого прибора.
Возьмем горизонтальную стеклянную трубу, в центральной части которой сделано сужение (см. рис.). Припаяем к отверстиям в этой трубе три тонких стеклянных трубочки – две около краев трубы (там, где она толще) и одну – в центральной части трубы (там, где находится сужение). Расположим эту трубу горизонтально и будем пропускать через нее воду под давлением – так, как показано стрелкой на рисунке. Из направленных вверх трубочек начнут бить фонтанчики. Поскольку площадь поперечного сечения центральной части трубы меньше, то скорость протекания воды через эту часть будет больше, чем через левый и правый участки трубы. По этой причине в соответствии с законом Бернулли давление в жидкости в центральной части трубы будет меньше, чем в остальных частях трубы, и высота среднего фонтанчика будет меньше, чем крайних фонтанчиков.
Описанное явление легко объясняется и с помощью второго закона Ньютона. Действительно, частицы жидкости при переходе из начального участка трубы в центральный должны увеличить свою скорость, то есть ускориться. Для этого на них должна действовать сила, направленная в сторону центральной части трубы. Эта сила представляет собой разность сил давления. Следовательно, давление в центральной части трубы должно быть меньше, чем в ее начальной части. Совершенно аналогично рассматривается и переход жидкости из центральной части трубы в ее конечную часть, при котором частицы жидкости замедляются.
При помощи закона Бернулли могут быть объяснены разнообразные явления, возникающие при течении потоков жидкости или газа. Например, известно, что двум большим кораблям, движущимся попутными курсами, запрещается проходить близко друг от друга. При таком движении между близкими бортами кораблей возникает более быстрый поток движущейся воды, чем со стороны внешних бортов. Вследствие этого давление в потоке воды между кораблями становится меньше, чем снаружи, и возникает сила, которая начинает подталкивать корабли друг к другу. Если расстояние между кораблями мало, то может произойти их столкновение.

Видеоразбор

-

Ответ

Задача 7

Номер 20

ОГЭ

2 балла

Космонавт, находящийся на орбитальной космической станции, летающей вокруг Земли, выдавил из тюбика с космическим питанием каплю жидкости, которая начала летать по кабине станции. Какую форму примет эта капля?
Ответ поясните.

Поверхностное натяжение жидкостей

Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить ее вертикально и погрузить ее нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и еще целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.
Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел — твердых, жидких и газообразных, — с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на ее поверхности, «существуют» в особых условиях — они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из ее глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведет себя подобно натянутой упругой пленке — она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».
Приведенное выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди
всех тел именно шар обладает минимальной площадью поверхности при заданном объеме.
Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твердого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твердого тела. Если силы притяжения между молекулами жидкости и твердого тела велики, то жидкость будет стремиться растечься по поверхности твердого тела. В этом случае говорят, что жидкость хорошо смачивает твердое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведенная в контакт с чистым стеклом. Капля воды, помещенная на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твердого тела, то жидкость будет стремиться принять такую форму, чтобы площадь ее контакта с твердым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твердое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещенные на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то ее уровень окажется ниже уровня ртути в сосуде.

Видеоразбор

Видеоразбор

-

Ответ

Задача 7

Номер 20

ОГЭ

2 балла

Космонавт, находящийся на орбитальной космической станции, летающей вокруг Земли, выдавил из тюбика с космическим питанием каплю жидкости, которая начала летать по кабине станции. Какую форму примет эта капля?
Ответ поясните.

Поверхностное натяжение жидкостей

Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить ее вертикально и погрузить ее нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и еще целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.
Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел — твердых, жидких и газообразных, — с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на ее поверхности, «существуют» в особых условиях — они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из ее глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведет себя подобно натянутой упругой пленке — она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».
Приведенное выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди
всех тел именно шар обладает минимальной площадью поверхности при заданном объеме.
Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твердого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твердого тела. Если силы притяжения между молекулами жидкости и твердого тела велики, то жидкость будет стремиться растечься по поверхности твердого тела. В этом случае говорят, что жидкость хорошо смачивает твердое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведенная в контакт с чистым стеклом. Капля воды, помещенная на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твердого тела, то жидкость будет стремиться принять такую форму, чтобы площадь ее контакта с твердым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твердое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещенные на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то ее уровень окажется ниже уровня ртути в сосуде.

Видеоразбор

Видеоразбор

-

Ответ

Задача 8

Номер 20

ОГЭ

2 балла

При проведении опыта Плато ученик наблюдал большую сферическую каплю анилина, которая плавала в сосуде с раствором соли с соответствующим образом подобранной концентрацией. Ученик досыпал на дно сосуда еще чуть-чуть соли. При медленном растворении соли плотность раствора в разных частях сосуда стала разной — в нижней части немного бóльшей, чем в верхней. Как изменится форма капли? Ответ поясните.

Поверхностное натяжение жидкостей

Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить ее вертикально и погрузить ее нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и еще целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.
Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел — твердых, жидких и газообразных, — с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на ее поверхности, «существуют» в особых условиях — они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из ее глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведет себя подобно натянутой упругой пленке — она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».
Приведенное выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди
всех тел именно шар обладает минимальной площадью поверхности при заданном объеме.
Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твердого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твердого тела. Если силы притяжения между молекулами жидкости и твердого тела велики, то жидкость будет стремиться растечься по поверхности твердого тела. В этом случае говорят, что жидкость хорошо смачивает твердое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведенная в контакт с чистым стеклом. Капля воды, помещенная на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твердого тела, то жидкость будет стремиться принять такую форму, чтобы площадь ее контакта с твердым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твердое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещенные на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то ее уровень окажется ниже уровня ртути в сосуде.

Видеоразбор

Видеоразбор

-

Ответ

Задача 8

Номер 20

ОГЭ

2 балла

При проведении опыта Плато ученик наблюдал большую сферическую каплю анилина, которая плавала в сосуде с раствором соли с соответствующим образом подобранной концентрацией. Ученик досыпал на дно сосуда еще чуть-чуть соли. При медленном растворении соли плотность раствора в разных частях сосуда стала разной — в нижней части немного бóльшей, чем в верхней. Как изменится форма капли? Ответ поясните.

Поверхностное натяжение жидкостей

Если взять тонкую чистую стеклянную трубку (она называется капилляром), расположить ее вертикально и погрузить ее нижний конец в стакан с водой, то вода в трубке поднимется на некоторую высоту над уровнем воды в стакане. Повторяя этот опыт с трубками разных диаметров и с разными жидкостями, можно установить, что высота поднятия жидкости в капилляре получается различной. В узких трубках одна и та же жидкость поднимается выше, чем в широких. При этом в одной и той же трубке разные жидкости поднимаются на разные высоты. Результаты этих опытов, как и еще целый ряд других эффектов и явлений, объясняются наличием поверхностного натяжения жидкостей.
Возникновение поверхностного натяжения связано с тем, что молекулы жидкости могут взаимодействовать как между собой, так и с молекулами других тел — твердых, жидких и газообразных, — с которыми находятся в соприкосновении. Молекулы жидкости, которые находятся на ее поверхности, «существуют» в особых условиях — они контактируют и с другими молекулами жидкости, и с молекулами иных тел. Поэтому равновесие поверхности жидкости достигается тогда, когда обращается в ноль сумма всех сил взаимодействия молекул, находящихся на поверхности жидкости, с другими молекулами. Если молекулы, находящиеся на поверхности жидкости, взаимодействуют преимущественно с молекулами самой жидкости, то жидкость принимает форму, имеющую минимальную площадь свободной поверхности. Это связано с тем, что для увеличения площади свободной поверхности жидкости нужно переместить молекулы жидкости из ее глубины на поверхность, для чего необходимо «раздвинуть» молекулы, находящиеся на поверхности, то есть совершить работу против сил их взаимного притяжения. Таким образом, состояние жидкости с минимальной площадью свободной поверхности является наиболее выгодным с энергетической точки зрения. Поверхность жидкости ведет себя подобно натянутой упругой пленке — она стремится максимально сократиться. Именно с этим и связано появление термина «поверхностное натяжение».
Приведенное выше описание можно проиллюстрировать при помощи опыта Плато. Если поместить каплю анилина в раствор поваренной соли, подобрав концентрацию раствора так, чтобы капля плавала внутри раствора, находясь в состоянии безразличного равновесия, то капля под действием поверхностного натяжения примет шарообразную форму, поскольку среди
всех тел именно шар обладает минимальной площадью поверхности при заданном объеме.
Если молекулы, находящиеся на поверхности жидкости, контактируют с молекулами твердого тела, то поведение жидкости будет зависеть от того, насколько сильно взаимодействуют друг с другом молекулы жидкости и твердого тела. Если силы притяжения между молекулами жидкости и твердого тела велики, то жидкость будет стремиться растечься по поверхности твердого тела. В этом случае говорят, что жидкость хорошо смачивает твердое тело (или полностью смачивает его). Примером хорошего смачивания может служить вода, приведенная в контакт с чистым стеклом. Капля воды, помещенная на стеклянную пластинку, сразу же растекается по ней тонким слоем. Именно из-за хорошего смачивания стекла водой и наблюдается поднятие уровня воды в тонких стеклянных трубках. Если же силы притяжения молекул жидкости друг к другу значительно превышают силы их притяжения к молекулам твердого тела, то жидкость будет стремиться принять такую форму, чтобы площадь ее контакта с твердым телом была как можно меньше. В этом случае говорят, что жидкость плохо смачивает твердое тело (или полностью не смачивает его). Примером плохого смачивания могут служить капли ртути, помещенные на стеклянную пластинку. Они принимают форму почти сферических капель, немного деформированных из-за действия силы тяжести. Если опустить конец стеклянного капилляра не в воду, а в сосуд с ртутью, то ее уровень окажется ниже уровня ртути в сосуде.

Видеоразбор

Видеоразбор

-

Ответ

Задача 9

Номер 20

ОГЭ

2 балла

Какой прилив является более сильным: происходящий вследствие воздействия на водную поверхность Солнца или Луны? Ответ поясните.

Приливы и отливы

Уровень поверхности океанов и морей периодически, приблизительно два раза в течение суток, изменяется. Эти колебания называются приливами и отливами. Во время прилива уровень воды в океане постепенно повышается и становится наивысшим. При отливе уровень воды постепенно понижается и становится наинизшим. При приливе вода течет к берегам, а при отливе — от берегов.
Приливы и отливы образуются вследствие влияния на Землю таких космических тел, как Луна и Солнце. В соответствии с законом всемирного тяготения Луна и Земля притягиваются друг к другу. Это притяжение настолько велико, что поверхность океана стремится приблизиться к Луне, происходит прилив. При движении Луны вокруг Земли приливная волна как бы движется за ней. При достаточном удалении Луны от того места, где был прилив, волна отойдет от берега, и будет наблюдаться отлив.
Притяжение Земли Солнцем также приводит к образованию приливов и отливов. Однако поскольку расстояние от Земли до Солнца значительно больше расстояния от Земли до Луны, то воздействие Солнца на водную поверхность Земли существенно меньше.
Приливы отличаются друг от друга продолжительностью и высотой (величиной прилива).
Величина приливов достаточно разнообразна. Теоретически один лунный прилив равен 0,53 м, солнечный — 0,24 м, поэтому самый большой прилив должен быть равен 0,77 м. В открытом океане, около островов, величина приливов близка к этому значению. У материков величина приливов колеблется от 1,5 м до 2 м. Во внутренних морях приливы очень незначительны: в Черном море — 13 см, в Балтийском — 4,8 см.
Значение приливов очень велико для морского судоходства, для устройства портов. Каждая приливная волна несет большую энергию, которая может быть использована.

Видеоразбор

Видеоразбор

-

Ответ

Задача 9

Номер 20

ОГЭ

2 балла

Какой прилив является более сильным: происходящий вследствие воздействия на водную поверхность Солнца или Луны? Ответ поясните.

Приливы и отливы

Уровень поверхности океанов и морей периодически, приблизительно два раза в течение суток, изменяется. Эти колебания называются приливами и отливами. Во время прилива уровень воды в океане постепенно повышается и становится наивысшим. При отливе уровень воды постепенно понижается и становится наинизшим. При приливе вода течет к берегам, а при отливе — от берегов.
Приливы и отливы образуются вследствие влияния на Землю таких космических тел, как Луна и Солнце. В соответствии с законом всемирного тяготения Луна и Земля притягиваются друг к другу. Это притяжение настолько велико, что поверхность океана стремится приблизиться к Луне, происходит прилив. При движении Луны вокруг Земли приливная волна как бы движется за ней. При достаточном удалении Луны от того места, где был прилив, волна отойдет от берега, и будет наблюдаться отлив.
Притяжение Земли Солнцем также приводит к образованию приливов и отливов. Однако поскольку расстояние от Земли до Солнца значительно больше расстояния от Земли до Луны, то воздействие Солнца на водную поверхность Земли существенно меньше.
Приливы отличаются друг от друга продолжительностью и высотой (величиной прилива).
Величина приливов достаточно разнообразна. Теоретически один лунный прилив равен 0,53 м, солнечный — 0,24 м, поэтому самый большой прилив должен быть равен 0,77 м. В открытом океане, около островов, величина приливов близка к этому значению. У материков величина приливов колеблется от 1,5 м до 2 м. Во внутренних морях приливы очень незначительны: в Черном море — 13 см, в Балтийском — 4,8 см.
Значение приливов очень велико для морского судоходства, для устройства портов. Каждая приливная волна несет большую энергию, которая может быть использована.

Видеоразбор

Видеоразбор

-

Ответ

Задача 10

Номер 20

ОГЭ

2 балла

На рисунке схематически изображено распространение сейсмической волны от очага землетрясения. Какой из слоев (А или Б) имеет бόльшую плотность? Ответ обоснуйте.

Сейсмические методы исследования

Механические волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов, называются сейсмическими волнами.
Для исследования землетрясений и внутреннего строения Земли наибольший интерес вызывают два вида сейсмических волн: продольные (волны сжатия) и поперечные. В отличие от продольных волн, поперечные волны не распространяются внутри жидкостей и газов. Скорость этих волн в одном и том же веществе разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн примерно 5 км/с, а скорость продольных волн: 10 км/с
Распространяясь из очага землетрясения, первыми на сейсмическую станцию приходят продольные волны, а спустя некоторое время — поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Для более точных измерений используют данные нескольких сейсмических станций. Ежегодно на земном шаре регистрируют сотни тысяч землетрясений.
Сейсмические волны используются для исследования глубоких слоев Земли. Когда сейсмические волны проходят через среду, плотность и состав которой изменяются, то скорости волн также меняются, что проявляется в преломлении волн. В более плотных слоях Земли скорость волн возрастает; соответственно, возрастает угол преломления. Характер преломления сейсмических волн позволяет исследовать плотность и внутреннее строение Земли. Отсутствие поперечных волн, прошедших через центральную область Земли, позволило английскому сейсмологу Олдгему сделать вывод о существовании жидкого ядра Земли.
Сейсмический метод отраженных волн используется для поиска полезных ископаемых (например, месторождений нефти и газа). Этот метод основан на отражении искусственно созданной сейсмической волны на границе пород с разными плотностями. В скважине, пробуренной в исследуемом районе, взрывают небольшой заряд. Возникающая сейсмическая волна распространяется по всем направлениям. Достигнув границ исследуемой породы, волна отражается и возвращается обратно к земной поверхности, где ее «ловит» специальный прибор (сейсмоприемник).

Видеоразбор

-

Ответ

Задача 10

Номер 20

ОГЭ

2 балла

На рисунке схематически изображено распространение сейсмической волны от очага землетрясения. Какой из слоев (А или Б) имеет бόльшую плотность? Ответ обоснуйте.

Сейсмические методы исследования

Механические волны, распространяющиеся в Земле от очагов землетрясений или каких-нибудь мощных взрывов, называются сейсмическими волнами.
Для исследования землетрясений и внутреннего строения Земли наибольший интерес вызывают два вида сейсмических волн: продольные (волны сжатия) и поперечные. В отличие от продольных волн, поперечные волны не распространяются внутри жидкостей и газов. Скорость этих волн в одном и том же веществе разная: продольные распространяются быстрее поперечных. Например, на глубине 500 км скорость поперечных сейсмических волн примерно 5 км/с, а скорость продольных волн: 10 км/с
Распространяясь из очага землетрясения, первыми на сейсмическую станцию приходят продольные волны, а спустя некоторое время — поперечные. Зная скорость распространения сейсмических волн в земной коре и время запаздывания поперечной волны, можно определить расстояние до центра землетрясения. Для более точных измерений используют данные нескольких сейсмических станций. Ежегодно на земном шаре регистрируют сотни тысяч землетрясений.
Сейсмические волны используются для исследования глубоких слоев Земли. Когда сейсмические волны проходят через среду, плотность и состав которой изменяются, то скорости волн также меняются, что проявляется в преломлении волн. В более плотных слоях Земли скорость волн возрастает; соответственно, возрастает угол преломления. Характер преломления сейсмических волн позволяет исследовать плотность и внутреннее строение Земли. Отсутствие поперечных волн, прошедших через центральную область Земли, позволило английскому сейсмологу Олдгему сделать вывод о существовании жидкого ядра Земли.
Сейсмический метод отраженных волн используется для поиска полезных ископаемых (например, месторождений нефти и газа). Этот метод основан на отражении искусственно созданной сейсмической волны на границе пород с разными плотностями. В скважине, пробуренной в исследуемом районе, взрывают небольшой заряд. Возникающая сейсмическая волна распространяется по всем направлениям. Достигнув границ исследуемой породы, волна отражается и возвращается обратно к земной поверхности, где ее «ловит» специальный прибор (сейсмоприемник).

Видеоразбор

-

Ответ