60+

Уникальных
вариантов

4 200+

Разборов
с видео

7 000+

Уникальных задач

Банк Задач - Global_EE

Мы собрали более 7 000 задач по физике. 4 200 из них уже с видеоразборами

Выбор предмета

Выберите предмет, нажимая на кнопки ниже

ОГЭ
ЕГЭ

Задача 1

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. В масс-спектрографе электрическое поле служит для ускорения заряженной частицы, а магнитное поле служит для изменения направления ее движения.
2. В масс-спектрографе электрическое поле служит для изменения направления движения заряженной частицы, а магнитное поле служит для ее ускорения.
3. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, увеличится в 2 раза.
4. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, уменьшится в √2 раз.
5. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, уменьшится в 2 раза.

Масс-спектрограф

Масс-спектрограф — это прибор для разделения ионов по величине отношения их заряда к массе. В самой простой модификации схема прибора представлена на рисунке.
Рисунок для задачи
Исследуемый образец специальными методами (испарением, электронным ударом) переводится в газообразное состояние, затем образовавшийся газ ионизируется в источнике 1. Затем ионы ускоряются электрическим полем и формируются в узкий пучок в ускоряющем устройстве 2, после чего через узкую входную щель попадают в камеру 3, в которой создано однородное магнитное поле. Магнитное поле изменяет траекторию движения частиц. Под действием силы Лоренца ионы начинают двигаться по дуге окружности и попадают на экран 4, где регистрируется место их попадания. Методы регистрации могут быть различными: фотографические, электронные и т. д. Радиус траектории определяется по формуле:
Рисунок для задачи
где U — электрическое напряжение ускоряющего электрического поля; B — индукция магнитного поля; m и q — соответственно масса и заряд частицы.
Так как радиус траектории зависит от массы и заряда иона, то разные ионы попадают на экран на различном расстоянии от источника, что и позволяет их разделять и анализировать состав образца.
В настоящее время разработаны многочисленные типы масс-спектрометров, принципы работы которых отличаются от рассмотренного выше. Изготавливаются, например, динамические масс-спектрометры, в которых массы исследуемых ионов определяются по времени пролета от источника до регистрирующего устройства.

Видеоразбор

15

Ответ

Задача 1

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. В масс-спектрографе электрическое поле служит для ускорения заряженной частицы, а магнитное поле служит для изменения направления ее движения.
2. В масс-спектрографе электрическое поле служит для изменения направления движения заряженной частицы, а магнитное поле служит для ее ускорения.
3. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, увеличится в 2 раза.
4. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, уменьшится в √2 раз.
5. При увеличении магнитной индукции в 2 раза радиус окружности, по которой движется заданная заряженная частица, уменьшится в 2 раза.

Масс-спектрограф

Масс-спектрограф — это прибор для разделения ионов по величине отношения их заряда к массе. В самой простой модификации схема прибора представлена на рисунке.
Рисунок для задачи
Исследуемый образец специальными методами (испарением, электронным ударом) переводится в газообразное состояние, затем образовавшийся газ ионизируется в источнике 1. Затем ионы ускоряются электрическим полем и формируются в узкий пучок в ускоряющем устройстве 2, после чего через узкую входную щель попадают в камеру 3, в которой создано однородное магнитное поле. Магнитное поле изменяет траекторию движения частиц. Под действием силы Лоренца ионы начинают двигаться по дуге окружности и попадают на экран 4, где регистрируется место их попадания. Методы регистрации могут быть различными: фотографические, электронные и т. д. Радиус траектории определяется по формуле:
Рисунок для задачи
где U — электрическое напряжение ускоряющего электрического поля; B — индукция магнитного поля; m и q — соответственно масса и заряд частицы.
Так как радиус траектории зависит от массы и заряда иона, то разные ионы попадают на экран на различном расстоянии от источника, что и позволяет их разделять и анализировать состав образца.
В настоящее время разработаны многочисленные типы масс-спектрометров, принципы работы которых отличаются от рассмотренного выше. Изготавливаются, например, динамические масс-спектрометры, в которых массы исследуемых ионов определяются по времени пролета от источника до регистрирующего устройства.

Видеоразбор

15

Ответ

Задача 2

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Полярным сиянием называют образование радуги.
2. Полярным сиянием называют свечение некоторых слоев атмосферы.
3. Наибольшая активность полярных сияний проявляется только около Северного полюса.
4. Наибольшая активность полярных сияний проявляется только в экваториальных широтах.
5. Наибольшая активность полярных сияний проявляется около магнитных полюсов Земли.

Полярные сияния

Полярное сияние — одно из самых красивых явлений в природе. Формы полярного сияния очень разнообразны: то это своеобразные светлые столбы, то изумрудно-зеленые с красной бахромой пылающие длинные ленты, расходящиеся многочисленные лучи-стрелы, а то и просто бесформенные светлые, иногда цветные пятна на небе.
Причудливый свет на небе сверкает, как пламя, охватывая порой больше чем полнеба. Эта фантастическая игра природных сил длится несколько часов, то угасая, то разгораясь.
Полярные сияния чаще всего наблюдаются в приполярных регионах, откуда и происходит это название. Полярные сияния могут быть видны не только на далеком Севере, но и южнее. Например, в 1938 году полярное сияние наблюдалось на южном берегу Крыма, что объясняется увеличением мощности возбудителя свечения — солнечного ветра.
Начало изучению полярных сияний положил великий русский ученый М. В. Ломоносов, высказавший гипотезу о том, что причиной этого явления служат электрические разряды в разреженном воздухе.
Опыты подтвердили научное предположение ученого.
Полярные сияния — это электрическое свечение верхних очень разреженных слоев атмосферы на высоте (обычно) от 80 до 1000 км. Свечение это происходит под влиянием быстро движущихся электрически заряженных частиц (электронов и протонов), приходящих от Солнца. Взаимодействие солнечного ветра с магнитным полем Земли приводит к повышенной концентрации заряженных частиц в зонах, окружающих геомагнитные полюса Земли. Именно в этих зонах и наблюдается наибольшая активность полярных сияний.
Столкновения быстрых электронов и протонов с атомами кислорода и азота приводят атомы в возбужденное состояние. Выделяя избыток энергии, атомы кислорода дают яркое излучение в зеленой и красной областях спектра, молекулы азота — в фиолетовой. Сочетание всех этих излучений и придает полярным сияниям красивую, часто меняющуюся окраску. Такие процессы могут происходить только в верхних слоях атмосферы, потому что, во-первых, в нижних плотных слоях столкновения атомов и молекул воздуха друг с другом сразу отнимают у них энергию, получаемую от солнечных частиц, а во-вторых, сами космические частицы не могут проникнуть глубоко в земную атмосферу.
Полярные сияния происходят чаще и бывают ярче в годы максимума солнечной активности, а также в дни появления на Солнце мощных вспышек и других форм усиления солнечной активности, так как с ее повышением усиливается интенсивность солнечного ветра, который является причиной возникновения полярных сияний.

Видеоразбор

25

Ответ

Задача 2

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Полярным сиянием называют образование радуги.
2. Полярным сиянием называют свечение некоторых слоев атмосферы.
3. Наибольшая активность полярных сияний проявляется только около Северного полюса.
4. Наибольшая активность полярных сияний проявляется только в экваториальных широтах.
5. Наибольшая активность полярных сияний проявляется около магнитных полюсов Земли.

Полярные сияния

Полярное сияние — одно из самых красивых явлений в природе. Формы полярного сияния очень разнообразны: то это своеобразные светлые столбы, то изумрудно-зеленые с красной бахромой пылающие длинные ленты, расходящиеся многочисленные лучи-стрелы, а то и просто бесформенные светлые, иногда цветные пятна на небе.
Причудливый свет на небе сверкает, как пламя, охватывая порой больше чем полнеба. Эта фантастическая игра природных сил длится несколько часов, то угасая, то разгораясь.
Полярные сияния чаще всего наблюдаются в приполярных регионах, откуда и происходит это название. Полярные сияния могут быть видны не только на далеком Севере, но и южнее. Например, в 1938 году полярное сияние наблюдалось на южном берегу Крыма, что объясняется увеличением мощности возбудителя свечения — солнечного ветра.
Начало изучению полярных сияний положил великий русский ученый М. В. Ломоносов, высказавший гипотезу о том, что причиной этого явления служат электрические разряды в разреженном воздухе.
Опыты подтвердили научное предположение ученого.
Полярные сияния — это электрическое свечение верхних очень разреженных слоев атмосферы на высоте (обычно) от 80 до 1000 км. Свечение это происходит под влиянием быстро движущихся электрически заряженных частиц (электронов и протонов), приходящих от Солнца. Взаимодействие солнечного ветра с магнитным полем Земли приводит к повышенной концентрации заряженных частиц в зонах, окружающих геомагнитные полюса Земли. Именно в этих зонах и наблюдается наибольшая активность полярных сияний.
Столкновения быстрых электронов и протонов с атомами кислорода и азота приводят атомы в возбужденное состояние. Выделяя избыток энергии, атомы кислорода дают яркое излучение в зеленой и красной областях спектра, молекулы азота — в фиолетовой. Сочетание всех этих излучений и придает полярным сияниям красивую, часто меняющуюся окраску. Такие процессы могут происходить только в верхних слоях атмосферы, потому что, во-первых, в нижних плотных слоях столкновения атомов и молекул воздуха друг с другом сразу отнимают у них энергию, получаемую от солнечных частиц, а во-вторых, сами космические частицы не могут проникнуть глубоко в земную атмосферу.
Полярные сияния происходят чаще и бывают ярче в годы максимума солнечной активности, а также в дни появления на Солнце мощных вспышек и других форм усиления солнечной активности, так как с ее повышением усиливается интенсивность солнечного ветра, который является причиной возникновения полярных сияний.

Видеоразбор

25

Ответ

Задача 3

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Магнитные бури на Земле представляют собой быстрые и непрерывные изменения облачности.
2. Магнитные бури на Земле представляют собой быстрые и непрерывные изменения магнитного поля планеты.
3. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением азота.
4. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением кислорода
5. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением водорода.

Полярные сияния

В период активности на Солнце наблюдаются вспышки. Вспышка представляет собой нечто подобное взрыву, в результате образуется направленный поток очень быстрых заряженных частиц (электронов, протонов и др.). Потоки заряженных частиц, несущихся с огромной скоростью, изменяют магнитное поле Земли, то есть приводят к появлению магнитных бурь на нашей планете.
Захваченные магнитным полем Земли заряженные частицы движутся вдоль магнитных силовых линий и наиболее близко к поверхности Земли проникают в области магнитных полюсов Земли. В результате столкновений заряженных частиц с молекулами воздуха возникает электромагнитное излучение — полярное сияние.
Цвет полярного сияния определяется химическим составом атмосферы. На высотах от 300 до 500 км, где воздух разрежен, преобладает кислород. Цвет сияния здесь может быть зеленым или красноватым. Ниже уже преобладает азот, дающий сияния ярко-красного и фиолетового цветов.
Наиболее убедительным доводом в пользу того, что мы правильно понимаем природу полярного сияния, является его повторение в лаборатории. Такой эксперимент, получивший название «Араке», был проведен в 1985 году совместно российскими и французскими исследователями.
В качестве лабораторий были выбраны две точки на поверхности Земли, лежащие вдоль одной и той же силовой линии магнитного поля. Этими точками служили в Южном полушарии французский остров Кергелен в Индийском океане и в Северном полушарии поселок Согра в Архангельской области. С острова Кергелен стартовала геофизическая ракета с небольшим ускорителем частиц, который на определенной высоте создал поток электронов. Двигаясь вдоль магнитной силовой линии, эти электроны проникли в Северное полушарие и вызвали искусственное полярное сияние над Согрой.

Видеоразбор

23

Ответ

Задача 3

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Магнитные бури на Земле представляют собой быстрые и непрерывные изменения облачности.
2. Магнитные бури на Земле представляют собой быстрые и непрерывные изменения магнитного поля планеты.
3. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением азота.
4. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением кислорода
5. Цвет полярного сияния, возникающего на высоте 100 км, определяется преимущественно излучением водорода.

Полярные сияния

В период активности на Солнце наблюдаются вспышки. Вспышка представляет собой нечто подобное взрыву, в результате образуется направленный поток очень быстрых заряженных частиц (электронов, протонов и др.). Потоки заряженных частиц, несущихся с огромной скоростью, изменяют магнитное поле Земли, то есть приводят к появлению магнитных бурь на нашей планете.
Захваченные магнитным полем Земли заряженные частицы движутся вдоль магнитных силовых линий и наиболее близко к поверхности Земли проникают в области магнитных полюсов Земли. В результате столкновений заряженных частиц с молекулами воздуха возникает электромагнитное излучение — полярное сияние.
Цвет полярного сияния определяется химическим составом атмосферы. На высотах от 300 до 500 км, где воздух разрежен, преобладает кислород. Цвет сияния здесь может быть зеленым или красноватым. Ниже уже преобладает азот, дающий сияния ярко-красного и фиолетового цветов.
Наиболее убедительным доводом в пользу того, что мы правильно понимаем природу полярного сияния, является его повторение в лаборатории. Такой эксперимент, получивший название «Араке», был проведен в 1985 году совместно российскими и французскими исследователями.
В качестве лабораторий были выбраны две точки на поверхности Земли, лежащие вдоль одной и той же силовой линии магнитного поля. Этими точками служили в Южном полушарии французский остров Кергелен в Индийском океане и в Северном полушарии поселок Согра в Архангельской области. С острова Кергелен стартовала геофизическая ракета с небольшим ускорителем частиц, который на определенной высоте создал поток электронов. Двигаясь вдоль магнитной силовой линии, эти электроны проникли в Северное полушарие и вызвали искусственное полярное сияние над Согрой.

Видеоразбор

23

Ответ

Задача 4

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. УЗО описанной конструкции можно применять в цепи постоянного тока, так как цепь постоянного тока также имеет два основных провода — «плюс» и «минус», по которым токи текут в противоположных направлениях.
2. Для нормальной работы УЗО к его входным контактам подключаются нулевой, фазный и заземляющий провод.
3. Для нормальной работы УЗО к его входным контактам подключаются нулевой и заземляющий провод.
4. Для нормальной работы УЗО к его входным контактам подключаются нулевой и фазный провод.
5. УЗО описанной конструкции нельзя применять в цепи постоянного тока, так как УЗО срабатывает при появлении пронизывающего катушку переменного магнитного поля, которое может быть создано только переменным током.

Устройство защитного отключения

Жизнь современного человека невозможно представить без различных электроприборов. Электрические лампы, электроплиты, электрочайники, телевизоры, холодильники, аудио- и видеосистемы, фены и многие другие электроприборы прочно вошли в нашу жизнь. Для обеспечения работы этих приборов все помещения, предназначенные для постоянного или временного проживания человека, электрифицируются. Стандарты, принятые в нашей стране, предусматривают подключение электроприборов к переменному напряжению (220 В, 50 Гц). В помещение обычно вводятся три провода — нулевой, фазный и заземляющий. При подключении вилки электроприбора между нулевым и фазным проводом (посредством розетки) на прибор подается нужное переменное напряжение, и в цепи прибора начинает протекать переменный электрический ток. Заземляющий провод при помощи специального контакта, имеющегося в розетке, подключается к корпусу прибора.
Поскольку переменное напряжение, о котором идет речь, опасно для жизни, важной задачей является обеспечение безопасности подключения электроприборов. В частности, необходимы специальные приспособления, которые обеспечивают отключение помещения от сети переменного напряжения в случае возникновения утечки электрического тока из фазного провода на заземляющий провод — через поврежденную изоляцию или человеческое тело. Такое приспособление называется устройством защитного отключения (УЗО).
Поясним принцип действия УЗО при помощи рисунка. Входящие в помещение нулевой и фазный провода (0 и Ф) подключаются к входным контактам (1) УЗО, а провода, идущие к розеткам - к выходным контактам (2) УЗО. Заземляющий провод (3) к УЗО не подключается, он подсоединяется напрямую к специальной клемме в розетке. Для включения УЗО (и подачи напряжения в розетки) нужно нажать кнопку (3) - в результате этого пружинные контакты (4) замыкаются, и УЗО пропускает ток. При этом одновременно включается питание электромагнита (5), который удерживает контакты (4) в замкнутом состоянии. Нулевой и фазный провода расположены параллельно друг другу и проходят через отверстие в каркасе, на котором намотана катушка (6), содержащая много витков проволоки (нулевой и фазный провода не имеют электрического контакта с катушкой). При нормальной работе электроприборов ток, текущий по фазному проводу, в точности равен току, текущему по нулевому проводу, причем в каждый момент времени эти токи текут в противоположных направлениях. Поэтому при нормальной работе электроприборов магнитное поле, создаваемое совместно токами, текущими в нулевом и в фазном проводе, близко к нулю. При возникновении утечки тока из фазного провода в заземляющий провод (например, в результате одновременного прикосновения человека к фазному и к заземляющему проводу) баланс нарушается - ток, текущий по нулевому проводу, становится меньше тока, текущего по фазному проводу (часть тока утекает через заземляющий провод «мимо» нулевого). Вследствие этого вокруг нулевого и фазного провода возникает заметное переменное магнитное поле, которое вызывает появление ЭДС индукции в намотанной на каркас катушке (6). В результате в катушке начинает протекать переменный электрический ток, который регистрируется следящим электронным устройством (7). Это устройство сразу же размыкает ключ (8) и тем самым отключает питание электромагнита (5), который, в свою очередь, перестает удерживать в замкнутом состоянии контакты (4), и они под действием пружины также размыкаются, отключая розетки от нулевого и фазного провода.
Из приведенного описания ясно, что УЗО будет срабатывать во всех случаях, когда будет становиться отличным от нуля суммарный ток, текущий через нулевой и фазный провода, пропущенные через катушку (6). УЗО конструируют так, чтобы оно срабатывало и разрывало питающую цепь за максимально короткий промежуток времени, чтобы электрический ток не успел нанести вред человеческому организму.

Видеоразбор

45

Ответ

Задача 4

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. УЗО описанной конструкции можно применять в цепи постоянного тока, так как цепь постоянного тока также имеет два основных провода — «плюс» и «минус», по которым токи текут в противоположных направлениях.
2. Для нормальной работы УЗО к его входным контактам подключаются нулевой, фазный и заземляющий провод.
3. Для нормальной работы УЗО к его входным контактам подключаются нулевой и заземляющий провод.
4. Для нормальной работы УЗО к его входным контактам подключаются нулевой и фазный провод.
5. УЗО описанной конструкции нельзя применять в цепи постоянного тока, так как УЗО срабатывает при появлении пронизывающего катушку переменного магнитного поля, которое может быть создано только переменным током.

Устройство защитного отключения

Жизнь современного человека невозможно представить без различных электроприборов. Электрические лампы, электроплиты, электрочайники, телевизоры, холодильники, аудио- и видеосистемы, фены и многие другие электроприборы прочно вошли в нашу жизнь. Для обеспечения работы этих приборов все помещения, предназначенные для постоянного или временного проживания человека, электрифицируются. Стандарты, принятые в нашей стране, предусматривают подключение электроприборов к переменному напряжению (220 В, 50 Гц). В помещение обычно вводятся три провода — нулевой, фазный и заземляющий. При подключении вилки электроприбора между нулевым и фазным проводом (посредством розетки) на прибор подается нужное переменное напряжение, и в цепи прибора начинает протекать переменный электрический ток. Заземляющий провод при помощи специального контакта, имеющегося в розетке, подключается к корпусу прибора.
Поскольку переменное напряжение, о котором идет речь, опасно для жизни, важной задачей является обеспечение безопасности подключения электроприборов. В частности, необходимы специальные приспособления, которые обеспечивают отключение помещения от сети переменного напряжения в случае возникновения утечки электрического тока из фазного провода на заземляющий провод — через поврежденную изоляцию или человеческое тело. Такое приспособление называется устройством защитного отключения (УЗО).
Поясним принцип действия УЗО при помощи рисунка. Входящие в помещение нулевой и фазный провода (0 и Ф) подключаются к входным контактам (1) УЗО, а провода, идущие к розеткам - к выходным контактам (2) УЗО. Заземляющий провод (3) к УЗО не подключается, он подсоединяется напрямую к специальной клемме в розетке. Для включения УЗО (и подачи напряжения в розетки) нужно нажать кнопку (3) - в результате этого пружинные контакты (4) замыкаются, и УЗО пропускает ток. При этом одновременно включается питание электромагнита (5), который удерживает контакты (4) в замкнутом состоянии. Нулевой и фазный провода расположены параллельно друг другу и проходят через отверстие в каркасе, на котором намотана катушка (6), содержащая много витков проволоки (нулевой и фазный провода не имеют электрического контакта с катушкой). При нормальной работе электроприборов ток, текущий по фазному проводу, в точности равен току, текущему по нулевому проводу, причем в каждый момент времени эти токи текут в противоположных направлениях. Поэтому при нормальной работе электроприборов магнитное поле, создаваемое совместно токами, текущими в нулевом и в фазном проводе, близко к нулю. При возникновении утечки тока из фазного провода в заземляющий провод (например, в результате одновременного прикосновения человека к фазному и к заземляющему проводу) баланс нарушается - ток, текущий по нулевому проводу, становится меньше тока, текущего по фазному проводу (часть тока утекает через заземляющий провод «мимо» нулевого). Вследствие этого вокруг нулевого и фазного провода возникает заметное переменное магнитное поле, которое вызывает появление ЭДС индукции в намотанной на каркас катушке (6). В результате в катушке начинает протекать переменный электрический ток, который регистрируется следящим электронным устройством (7). Это устройство сразу же размыкает ключ (8) и тем самым отключает питание электромагнита (5), который, в свою очередь, перестает удерживать в замкнутом состоянии контакты (4), и они под действием пружины также размыкаются, отключая розетки от нулевого и фазного провода.
Из приведенного описания ясно, что УЗО будет срабатывать во всех случаях, когда будет становиться отличным от нуля суммарный ток, текущий через нулевой и фазный провода, пропущенные через катушку (6). УЗО конструируют так, чтобы оно срабатывало и разрывало питающую цепь за максимально короткий промежуток времени, чтобы электрический ток не успел нанести вред человеческому организму.

Видеоразбор

45

Ответ

Задача 5

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Электромеханическая часть в конденсаторном микрофоне включает в себя конденсатор с подвижной пластиной и электрическую цепь, в которую он включен.
2. Электромеханическая часть в конденсаторном микрофоне включает в себя угольный порошок и электрическую цепь, в которую он включен.
3. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что катушку так удобнее прикреплять к мембране.
4. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что при таком положении катушки изменение магнитного потока через нее при колебаниях мембраны максимально.
5. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что при таком положении катушки изменение магнитного потока через нее при колебаниях мембраны минимально.

Микрофон

В современных технических устройствах, применяемых для записи и трансляции звука, невозможно обойтись без микрофона. Микрофон — это устройство, предназначенное для преобразования звуковой волны в электрический сигнал, который затем может использоваться для записи звука, для его усиления или воспроизведения. Микрофоны могут иметь различные конструкции, их работа основывается на различных физических принципах. Однако все микрофоны имеют общие элементы конструкции — это мембрана, которая воспринимает звуковые колебания, и электромеханическая часть, которая преобразует механические колебания в электромагнитные.
Рассмотрим в качестве наиболее простого примера электродинамический микрофон с подвижной катушкой. Он состоит из корпуса, внутри которого неподвижно закреплен полосовой постоянный магнит ПМ. Упругая мембрана М вынесена на один из торцов корпуса микрофона. К мембране прикреплена катушка К, на которую намотано много витков провода. Катушка расположена так, что она находится вблизи одного из полюсов магнита. При воздействии звуковых волн на мембрану она приходит в колебательное движение, и вместе с ней начинает колебаться катушка, двигаясь вдоль продольной оси магнита. В результате этого изменяется магнитный поток через катушку, и в ней, в соответствии с законом электромагнитной индукции, возникает переменное напряжение. Закон изменения этого напряжения соответствует закону колебаний мембраны под действием звуковых волн. Таким образом, механический сигнал (звуковая волна) преобразуется в электрический (колебания напряжения между выводами намотанного на катушку провода), который затем подается на специальную электрическую схему. Следовательно, в данном типе микрофона электромеханическая часть состоит из постоянного магнита, подвижной проволочной катушки и электрической цепи, к которой она подключена.
Существуют и другие типы микрофонов — конденсаторный микрофон (в нем мембрана прикреплена к одной из пластин включенного в электрическую цепь конденсатора, в результате чего при колебаниях мембраны изменяется его электрическая емкость), угольный микрофон (в нем мембрана при колебаниях давит на угольный порошок, включенный в электрическую цепь, в результате чего изменяется его сопротивление), пьезомикрофон (его работа основана на свойстве некоторых веществ — пьезоэлектриков — создавать электрическое поле при деформациях), а также ряд модификаций этих типов микрофонов.

Видеоразбор

14

Ответ

Задача 5

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Электромеханическая часть в конденсаторном микрофоне включает в себя конденсатор с подвижной пластиной и электрическую цепь, в которую он включен.
2. Электромеханическая часть в конденсаторном микрофоне включает в себя угольный порошок и электрическую цепь, в которую он включен.
3. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что катушку так удобнее прикреплять к мембране.
4. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что при таком положении катушки изменение магнитного потока через нее при колебаниях мембраны максимально.
5. В электродинамическом микрофоне, изображенном на рисунке, подвижную катушку располагают ближе к одному из полюсов постоянного магнита, потому что при таком положении катушки изменение магнитного потока через нее при колебаниях мембраны минимально.

Микрофон

В современных технических устройствах, применяемых для записи и трансляции звука, невозможно обойтись без микрофона. Микрофон — это устройство, предназначенное для преобразования звуковой волны в электрический сигнал, который затем может использоваться для записи звука, для его усиления или воспроизведения. Микрофоны могут иметь различные конструкции, их работа основывается на различных физических принципах. Однако все микрофоны имеют общие элементы конструкции — это мембрана, которая воспринимает звуковые колебания, и электромеханическая часть, которая преобразует механические колебания в электромагнитные.
Рассмотрим в качестве наиболее простого примера электродинамический микрофон с подвижной катушкой. Он состоит из корпуса, внутри которого неподвижно закреплен полосовой постоянный магнит ПМ. Упругая мембрана М вынесена на один из торцов корпуса микрофона. К мембране прикреплена катушка К, на которую намотано много витков провода. Катушка расположена так, что она находится вблизи одного из полюсов магнита. При воздействии звуковых волн на мембрану она приходит в колебательное движение, и вместе с ней начинает колебаться катушка, двигаясь вдоль продольной оси магнита. В результате этого изменяется магнитный поток через катушку, и в ней, в соответствии с законом электромагнитной индукции, возникает переменное напряжение. Закон изменения этого напряжения соответствует закону колебаний мембраны под действием звуковых волн. Таким образом, механический сигнал (звуковая волна) преобразуется в электрический (колебания напряжения между выводами намотанного на катушку провода), который затем подается на специальную электрическую схему. Следовательно, в данном типе микрофона электромеханическая часть состоит из постоянного магнита, подвижной проволочной катушки и электрической цепи, к которой она подключена.
Существуют и другие типы микрофонов — конденсаторный микрофон (в нем мембрана прикреплена к одной из пластин включенного в электрическую цепь конденсатора, в результате чего при колебаниях мембраны изменяется его электрическая емкость), угольный микрофон (в нем мембрана при колебаниях давит на угольный порошок, включенный в электрическую цепь, в результате чего изменяется его сопротивление), пьезомикрофон (его работа основана на свойстве некоторых веществ — пьезоэлектриков — создавать электрическое поле при деформациях), а также ряд модификаций этих типов микрофонов.

Видеоразбор

14

Ответ

Задача 6

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.
2. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит только от материала и формы проводника.
3. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то амплитуда колебаний пластины увеличится
4. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то колебания пластины резко затухнут
5. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то пластина будет совершать обычные свободные колебания

Токи Фуко

Рассмотрим простейший опыт, демонстрирующий возникновение индукционного тока в замкнутом витке из провода, помещенном в изменяющееся магнитное поле. Судить о наличии в витке индукционного тока можно по нагреванию проводника. Если, сохраняя прежние внешние размеры витка, сделать его из более толстого провода, то сопротивление витка уменьшится, а индукционный ток возрастет. Мощность, выделяемая в витке в виде тепла, увеличится.
Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления и скорости изменяющегося магнитного поля, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.
Если поместить внутрь катушки массивный железный сердечник и пропустить по катушке переменный ток, то сердечник нагревается очень сильно. Чтобы уменьшить нагревание, сердечник набирают из тонких пластин, изолированных друг от друга слоем лака.
Токи Фуко используются в индукционных печах для сильного нагревания и даже плавления металлов. Для этого металл помещают в переменное магнитное поле, создаваемое током частотой 500–2000 Гц.
Тормозящее действие токов Фуко используется для создания магнитных успокоителей — демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебания стрелки. Магнитные успокоители такого рода используются в гальванометрах и других приборах.

Видеоразбор

14

Ответ

Задача 6

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.
2. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит только от материала и формы проводника.
3. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то амплитуда колебаний пластины увеличится
4. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то колебания пластины резко затухнут
5. Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рис.), то пластина будет совершать обычные свободные колебания

Токи Фуко

Рассмотрим простейший опыт, демонстрирующий возникновение индукционного тока в замкнутом витке из провода, помещенном в изменяющееся магнитное поле. Судить о наличии в витке индукционного тока можно по нагреванию проводника. Если, сохраняя прежние внешние размеры витка, сделать его из более толстого провода, то сопротивление витка уменьшится, а индукционный ток возрастет. Мощность, выделяемая в витке в виде тепла, увеличится.
Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления и скорости изменяющегося магнитного поля, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.
Если поместить внутрь катушки массивный железный сердечник и пропустить по катушке переменный ток, то сердечник нагревается очень сильно. Чтобы уменьшить нагревание, сердечник набирают из тонких пластин, изолированных друг от друга слоем лака.
Токи Фуко используются в индукционных печах для сильного нагревания и даже плавления металлов. Для этого металл помещают в переменное магнитное поле, создаваемое током частотой 500–2000 Гц.
Тормозящее действие токов Фуко используется для создания магнитных успокоителей — демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебания стрелки. Магнитные успокоители такого рода используются в гальванометрах и других приборах.

Видеоразбор

14

Ответ

Задача 7

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. В циклотроне электрическое и магнитное поля служат для изменения направления движения заряженной частицы.
2. В циклотроне электрическое поле служит для увеличения энергии заряженной частицы, а магнитное поле служит для изменения направления ее движения.
3. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено перпендикулярно плоскости чертежа к нам · B
4. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено справа налево ← B
5. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено слева направо → B

Циклотрон

Для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий применяются специальные устройства — ускорители заряженных частиц. В основе работы ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать ее энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя ее энергии, и задает траекторию, по которой движутся частицы.
Ускорители заряженных частиц можно классифицировать по разным признакам. По типу ускоряемых частиц различают электронные ускорители, протонные ускорители и ускорители ионов. По характеру траекторий частиц различают линейные ускорители, в которых пучок частиц однократно проходит ускоряющие промежутки и траектории частиц близки к прямой линии, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям или спиралям), проходя ускоряющие промежутки по многу раз.
На рисунке 1 представлена схема работы циклотрона — циклического ускорителя протонов (или ионов). Частицы из ионного источника 1 непрерывно поступают в вакуумную камеру и ускоряются электрическим полем, создаваемым электродами 3. Магнитное поле, направленное перпендикулярно плоскости рисунка, заставляет заряженную частицу отклоняться от прямолинейного движения.
Каждый раз, проходя зазор между электродами, заряженная частица получает новую порцию энергии и дополнительно ускоряется. Траекторией движения ускоряющейся частицы в постоянном магнитном поле получается раскручивающаяся спираль.
Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году. До сих пор циклотроны широко применяются для ускорения тяжелых частиц до относительно небольших энергий.

Видеоразбор

23

Ответ

Задача 7

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. В циклотроне электрическое и магнитное поля служат для изменения направления движения заряженной частицы.
2. В циклотроне электрическое поле служит для увеличения энергии заряженной частицы, а магнитное поле служит для изменения направления ее движения.
3. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено перпендикулярно плоскости чертежа к нам · B
4. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено справа налево ← B
5. На рисунке 1 в тексте представлена траектория движения (раскручивающаяся спираль) для положительно заряженного иона. Магнитное поле циклотрона направлено слева направо → B

Циклотрон

Для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий применяются специальные устройства — ускорители заряженных частиц. В основе работы ускорителя лежит взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать ее энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя ее энергии, и задает траекторию, по которой движутся частицы.
Ускорители заряженных частиц можно классифицировать по разным признакам. По типу ускоряемых частиц различают электронные ускорители, протонные ускорители и ускорители ионов. По характеру траекторий частиц различают линейные ускорители, в которых пучок частиц однократно проходит ускоряющие промежутки и траектории частиц близки к прямой линии, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям или спиралям), проходя ускоряющие промежутки по многу раз.
На рисунке 1 представлена схема работы циклотрона — циклического ускорителя протонов (или ионов). Частицы из ионного источника 1 непрерывно поступают в вакуумную камеру и ускоряются электрическим полем, создаваемым электродами 3. Магнитное поле, направленное перпендикулярно плоскости рисунка, заставляет заряженную частицу отклоняться от прямолинейного движения.
Каждый раз, проходя зазор между электродами, заряженная частица получает новую порцию энергии и дополнительно ускоряется. Траекторией движения ускоряющейся частицы в постоянном магнитном поле получается раскручивающаяся спираль.
Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году. До сих пор циклотроны широко применяются для ускорения тяжелых частиц до относительно небольших энергий.

Видеоразбор

23

Ответ

Задача 8

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Для магнитной подвески можно использовать отталкивание одноименных полюсов.
2. При движении поезда на магнитной подвеске силы трения между поездом и дорогой отсутствуют.
3. При движении поезда на магнитной подвеске силы сопротивления воздуха пренебрежимо малы.
4. При движении поезда на магнитной подвеске используются силы электростатического отталкивания.
5. При движении поезда на магнитной подвеске используются силы притяжения одноименных магнитных полюсов.

Магнитная подвеска

Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолетом, непросто. При больших скоростях колеса поездов не выдерживают нагрузку. Выход один: отказаться от колес, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов.
В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал ее. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укрепленными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен.
Практически одновременно с Башле в 1911 году профессор Томского технологического института Б. Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперед, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!

Видеоразбор

12

Ответ

Задача 8

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Для магнитной подвески можно использовать отталкивание одноименных полюсов.
2. При движении поезда на магнитной подвеске силы трения между поездом и дорогой отсутствуют.
3. При движении поезда на магнитной подвеске силы сопротивления воздуха пренебрежимо малы.
4. При движении поезда на магнитной подвеске используются силы электростатического отталкивания.
5. При движении поезда на магнитной подвеске используются силы притяжения одноименных магнитных полюсов.

Магнитная подвеска

Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолетом, непросто. При больших скоростях колеса поездов не выдерживают нагрузку. Выход один: отказаться от колес, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов.
В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал ее. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укрепленными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен.
Практически одновременно с Башле в 1911 году профессор Томского технологического института Б. Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперед, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!

Видеоразбор

12

Ответ

Задача 9

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Дно посуды для индукционных плит может быть выполнено из стали.
2. Дно посуды для индукционных плит может быть выполнено из алюминия.
3. Дно посуды для индукционных плит может быть выполнено из меди.
4. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит только от скорости изменения магнитного поля.
5. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.

Принцип действия индукционной плиты

В основе действия индукционной плиты лежит явление электромагнитной индукции — явление возникновени электрического тока в замкнутом проводнике при изменении магнитного потока через площадку, ограниченную контуром проводника. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления вектора магнитной индукции и скорости его изменения, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.
Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет 20–60 кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещенные в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит: нагрев происходит быстрее, чем на газовой или обычной электрической плите, а КПД нагрева у индукционной плиты выше, чем у этих плит.
Индукционные плиты требуют применения металлической посуды, обладающей ферромагнитными свойствами (к посуде должен притягиваться магнит). Причем чем толще дно, тем быстрее происходит нагрев.

Видеоразбор

15

Ответ

Задача 9

Номер 19

ОГЭ

2 балла

Выберите два верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.

1. Дно посуды для индукционных плит может быть выполнено из стали.
2. Дно посуды для индукционных плит может быть выполнено из алюминия.
3. Дно посуды для индукционных плит может быть выполнено из меди.
4. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит только от скорости изменения магнитного поля.
5. Сила вихревого тока, возникающего в массивном проводнике, помещенном в переменное магнитное поле, зависит от скорости изменения магнитного поля, от материала и формы проводника.

Принцип действия индукционной плиты

В основе действия индукционной плиты лежит явление электромагнитной индукции — явление возникновени электрического тока в замкнутом проводнике при изменении магнитного потока через площадку, ограниченную контуром проводника. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления вектора магнитной индукции и скорости его изменения, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание.
Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет 20–60 кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещенные в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит: нагрев происходит быстрее, чем на газовой или обычной электрической плите, а КПД нагрева у индукционной плиты выше, чем у этих плит.
Индукционные плиты требуют применения металлической посуды, обладающей ферромагнитными свойствами (к посуде должен притягиваться магнит). Причем чем толще дно, тем быстрее происходит нагрев.

Видеоразбор

15

Ответ